A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks
Ang Li,
Ce Song and
Zijing Lin
Applied Energy, 2017, vol. 190, issue C, 1234-1244
Abstract:
A planar SOFC stack is an integral but basic power generation unit with physical conditions completely different from that of a laboratory button cell. The ability to reliably predict the operating behaviors of SOFC stacks is crucial for the technology advancement. The existing stack models either rely on simplified geometries, or handle a few selected fields that are relatively easy to couple. This paper reports the first successful development of a high geometry resolution, multiphysics fully coupled numerical model for production scale planar SOFC stacks. The computational model is developed through in-house developed multiphysics modules combined with commercial software FLUENT®. All stack components such as flow channels, manifolds, cathode-electrolyte-anode assemblies, interconnects, seals and frames are resolved in the numerical grids. The mathematical model includes the fully coupled equations of momentum, mass, species, heat and charge transports, electrochemical reaction, and methane steam reforming and shift reactions. An accurate relationship between the O2 transport and electrochemistry within the cathode-rib structure is established and used to enhance the numerical efficiency of the stack model. The stack model is validated with the experimental data. The numerical stability and modeling capability of this multiphysics stack model are illustrated by simulating a 30-cell stack of 27 million grid points. Detailed information about the distributions of flows, temperature, current and chemical species, etc, is revealed. Comparative studies show that the results obtained by simplifications of stack geometries or reductions of multiphysics couplings are unreliable, illustrating the necessity of employing a true multiphysics computational tool.
Keywords: Multi-physics model; Computational fluid dynamics; Coupling algorithm; Numerical grids; Simulation strategy; User defined functions modules (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:1234-1244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.01.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().