Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application
A. Di Blasi,
C. Busaccaa,
O. Di Blasia,
N. Briguglioa,
G. Squadritoa and
V. Antonuccia
Applied Energy, 2017, vol. 190, issue C, 165-171
Abstract:
Flexible carbon nanofiber (CNF)-based electrodes and CNF with a 20% of manganese oxide incorporated (Mn3O4/CNF) are prepared by using the electrospinning method for vanadium redox flow battery (VRFB) application. A blend consisting of manganese acetate (Mn(OAc)2) and polyacrilonitrile (PAN) is electrospun and successively subjected to different thermal treatments in which the growth of Mn3O4 particles and CNFs occurred together guaranteeing an appropriate electron conductivity for electrodes thus synthesized. Cyclic voltammetry (CV) measurements show an interesting electrocatalytic activity toward the [VO]2+/[VO2]+ as well as the V2+/V3+ redox reactions for the Mn3O4/CNF electrospun sample. Charge-discharge tests, carried out at 80mAcm−2, show a state of charge (SOC) and a depth of discharge (DoD) of 81% and 73%, respectively, for the cells assembled with Mn3O4/CNF electrodes. These data are indicative of a high vanadium active species utilization thanks to the better electrocatalytic activity at high current densities. Furthermore, the cell with Mn3O4/CNF shows EE values of about 81% (88% of VE and 92% of CE) vs. 70% (75% of VE and 93% of CE) with respect to a commercial carbon felt (CF) electrode used for comparison. These results are attributable to the higher oxygen species content as well as the improved electron conductivity due to the synergetic effect of the more graphitic carbon and to the structural defects within the Mn3O4 spinel structure.
Keywords: Vanadium redox flow battery; Manganese oxide; Carbon nanofibers; Electrospinning technique; Charge-discharge tests (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916319122
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:165-171
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.129
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().