Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
Deyun Wang,
Hongyuan Luo,
Olivier Grunder,
Yanbing Lin and
Haixiang Guo
Applied Energy, 2017, vol. 190, issue C, 390-407
Abstract:
In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by firefly algorithm (FA). The proposed model is unique in the sense that VMD is specifically applied to further decompose the high frequency intrinsic mode functions (IMFs) generated by FEEMD into a number of modes in order to improve the forecast accuracy. To validate the effectiveness and accuracy of the proposed model, three electricity price series respectively collected from the real-world electricity markets of Australia and France are adopted to conduct the empirical study. The results indicate that the proposed model outperforms the other considered models over horizons of one-step, two-step, four-step and six-step ahead forecasting, which shows that the proposed model has superior performances for both one-step and multi-step ahead forecasting of electricity price.
Keywords: Electricity price forecasting; Multi-step ahead; Fast ensemble empirical mode decomposition; Variational mode decomposition; Firefly algorithm; Back propagation neural network (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (94)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631916X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:390-407
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.134
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().