EconPapers    
Economics at your fingertips  
 

Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors

Miao Wang and Chao Feng

Applied Energy, 2017, vol. 190, issue C, 772-787

Abstract: To grasp the characteristics of CO2 emissions across provinces in China and to determine changes in the centre of gravity of CO2 emissions over the 2000–2014 period, a gravity model is first used to examine the spatial distribution and centre of gravity of energy-related CO2 emissions. Then, to explore the main factors driving CO2 emission changes and to uncover feasible ways to reduce CO2 emissions, this paper decomposes changes in energy-related CO2 emissions into a population effect (ΔCP), an economic output effect (ΔCQ), an industrial structure effect (ΔCS), an energy intensity effect (ΔCI), an energy structure effect (ΔCM) and a carbon dioxide emission coefficient effect (ΔCU) at both the national and provincial levels based on the Log-Mean Divisia Index (LMDI) method. The results indicate that (1) energy-related CO2 emissions rose by approximately 5.46 billion tonnes during the 2000–2014 period, with secondary industry accounting for approximately 80% of total CO2 emissions. (2) Economic output (Q) was the dominant positive driving factor, and energy intensity (I) was the dominant negative driving factor. The population changes had a weak positive effect on CO2 emissions, but the industrial structure effect and energy structure effect varied considerably over the years without showing clear trends. (3) Over multiple spatial scales, the contribution ratios of the factors varied significantly across provinces; in general, the positive driving effects outweighed the negative inhibiting effects. Based on these empirical findings, policy recommendations to further reduce CO2 emissions are provided. The Chinese central and local governments should make full use of the important inhibiting factors, i.e., energy intensity and energy structure, and strive for breakthroughs in secondary sector.

Keywords: Energy-related CO2 emissions; Driving factors; Centre of gravity; LMDI method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (12) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300090
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:772-787

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-10-13
Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:772-787