EconPapers    
Economics at your fingertips  
 

LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine

Jiaying Pan, Haiqiao Wei, Gequn Shu, Mingzhang Pan, Dengquan Feng and Nan Li

Applied Energy, 2017, vol. 191, issue C, 183-192

Abstract: Engine knock and super-knock have become the main barriers to significantly improving engine thermal efficiency. To further study the nature of the abnormal combustion, this work quantitatively investigates engine knock and super-knock using a Large Eddy Simulation framework coupling detailed chemistry solver. Firstly, classical knocking cycles with different knocking intensities have been calculated through adjusting spark-ignition timing. It shows that knocking onset and intensity vary proportionally with the advance of spark-ignition timing, however, super-knock events are not observed under the operation conditions. Then for a given spark-ignition timing, the blends of Primary Reference Fuels are introduced in order to obtain different octane number of mixture, through which super-knock events with stronger knocking intensity are observed. The results show that as the decreases of octane number, knocking onset is significantly advanced due to the enhancement of low-temperature chemical reactivity. Consequently, more auto-ignition centers appear at hot exhaust valve side and even cool intake valve side at very low octane number. But for the knocking intensity, it does not always show a proportional correlation with octane number during super-knock. Further auto-ignition scenarios show that developing detonation wave can be induced by both multiple hot-spots auto-ignition and directly by single hot-spot auto-ignition, with different reaction front curvatures. However, the later seems to produce much stronger knocking intensity, especially when there are several developing detonation waves during super-knock. Therefore, how to effectively regulate local auto-ignition initiation and development seems the key to the avoidance of abnormal combustion in modern engines.

Keywords: Engine knock; Super-knock; Auto-ignition; Primary Reference Fuel; Developing detonation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300521
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:191:y:2017:i:c:p:183-192

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.01.044

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:191:y:2017:i:c:p:183-192