LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine
Jiaying Pan,
Haiqiao Wei,
Gequn Shu,
Mingzhang Pan,
Dengquan Feng and
Nan Li
Applied Energy, 2017, vol. 191, issue C, 183-192
Abstract:
Engine knock and super-knock have become the main barriers to significantly improving engine thermal efficiency. To further study the nature of the abnormal combustion, this work quantitatively investigates engine knock and super-knock using a Large Eddy Simulation framework coupling detailed chemistry solver. Firstly, classical knocking cycles with different knocking intensities have been calculated through adjusting spark-ignition timing. It shows that knocking onset and intensity vary proportionally with the advance of spark-ignition timing, however, super-knock events are not observed under the operation conditions. Then for a given spark-ignition timing, the blends of Primary Reference Fuels are introduced in order to obtain different octane number of mixture, through which super-knock events with stronger knocking intensity are observed. The results show that as the decreases of octane number, knocking onset is significantly advanced due to the enhancement of low-temperature chemical reactivity. Consequently, more auto-ignition centers appear at hot exhaust valve side and even cool intake valve side at very low octane number. But for the knocking intensity, it does not always show a proportional correlation with octane number during super-knock. Further auto-ignition scenarios show that developing detonation wave can be induced by both multiple hot-spots auto-ignition and directly by single hot-spot auto-ignition, with different reaction front curvatures. However, the later seems to produce much stronger knocking intensity, especially when there are several developing detonation waves during super-knock. Therefore, how to effectively regulate local auto-ignition initiation and development seems the key to the avoidance of abnormal combustion in modern engines.
Keywords: Engine knock; Super-knock; Auto-ignition; Primary Reference Fuel; Developing detonation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:191:y:2017:i:c:p:183-192
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.01.044
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().