EconPapers    
Economics at your fingertips  
 

Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture

Stephen J. McGurk, Claudia F. Martín, Stefano Brandani, Martin B. Sweatman and Xianfeng Fan

Applied Energy, 2017, vol. 192, issue C, 126-133

Abstract: Post-combustion carbon capture is a key component of the fight against global warming and climate change. Amine stripping is currently the leading post-combustion technology, and indeed is employed at the World’s first and only commercial scale carbon capture project applied to a power plant, at Boundary Dam, Canada. Normally, regeneration of the spent amine solution is achieved by stripping with hot pressurized steam, at around 120–140°C and 1–2bar. However, production of these conditions is costly and leads to significant degradation of the amine. Moreover, the size of equipment, and hence capital costs, are also high due to the regeneration timescales involved. Here, we present proof-of-concept laboratory scale experiments to demonstrate the feasibility of regenerating the spent amine solution with microwave irradiation. We show that microwaves can regenerate spent aqueous monoethanolamine solutions quickly and at low temperatures (70–90°C), potentially reducing overall process costs. By comparing microwave regeneration with conventional thermal regeneration we suggest that, in addition to the usual benefits of microwave heating, microwaves present a special ‘non-thermal’ effect.

Keywords: CO2 capture; Amine; Energy; Microwave; Absorption kinetics; Absorption isotherm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301344
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:192:y:2017:i:c:p:126-133

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.02.012

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:126-133