Experimental characterization of closely coupled split isooctane sprays under flash boiling conditions
Ziman Wang,
Tawfik Badawy,
Bo Wang,
Yizhou Jiang and
Hongming Xu
Applied Energy, 2017, vol. 193, issue C, 199-209
Abstract:
The characteristics of isooctane spray in the near field and far field were experimentally studied under various flash boiling conditions representing both low load and high load hot engine operation conditions. Closely coupled split injection strategy was also employed to study the influence of flash boiling on the primary breakup of split injections and the interaction between split injections. It was found that flash boiling considerably boosted the spray atomization, especially during the end of injection stage when a large amount of liquid fuel with low speed was observed. The interaction between split injections in liquid phase was significantly weakened under flash boiling condition due to the enhanced atomization but the interaction in gaseous phase was boosted because of the resultant quicker evaporation. The effect of dwell interval on the spray behavior under flash boiling condition was profound, causing significant variation for the delivered fuel mass and spray characteristics.
Keywords: Flash boiling; Primary breakup; Split injection; Spray (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301241
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:193:y:2017:i:c:p:199-209
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.02.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().