EconPapers    
Economics at your fingertips  
 

Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation

Youngjin Kim and Leslie K. Norford

Applied Energy, 2017, vol. 193, issue C, 308-324

Abstract: Energy storage resources (ESRs) inherent in building structures are a viable, attractive option to improve power system operation by providing demand-side flexibility. This paper proposes a two-stage optimisation framework for price-based demand response of commercial buildings that include variable speed heat pumps (VSHPs). The proposed framework aims at assisting commercial building aggregators to devise a beneficial strategy for exploiting thermal ESRs in response to electricity prices. Specifically, in this paper, the thermal dynamics of VSHPs are modelled in detail using a set of piecewise linear equations for two different methods of room temperature control. The energy consumption and reserve provision of VSHPs, as well as plug-in electric vehicles, are then co-optimised considering the operating conditions of distribution networks (DNs) for the pre- and post-contingency states of wind power generation. Simulation case studies are performed to estimate the effects of building ESRs on the optimal operation of power systems and commercial buildings under various conditions characterised by: (1) temperature control methods, (2) ESR penetration levels, and (3) DN operational constraints.

Keywords: Commercial building; Demand response; Distribution network; Temperature control method; Thermal energy storage resource; Variable speed heat pump (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301897
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:193:y:2017:i:c:p:308-324

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.02.046

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:193:y:2017:i:c:p:308-324