EconPapers    
Economics at your fingertips  
 

Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature

Shintaro Ikeda, Wonjun Choi and Ryozo Ooka

Applied Energy, 2017, vol. 193, issue C, 466-478

Abstract: Recent years have witnessed the widespread use of highly efficient energy systems as an important measure to reduce not only energy consumption but also operating costs. A ground source heat pump system has been attracting considerable attention because of its high efficiency. Although many studies have been conducted to investigate and evaluate the ground source heat pump’s performance, they have not sufficiently studied its optimal operation considering dynamic ground temperature variation caused by the high thermal capacity of the ground. Calculations considering both thermal history of the ground and optimal load dispatch are complicated and thus entail high computation costs. In this paper, an efficient optimization method is proposed to determine optimal operations of a hybrid ground source heat pump system that is used to handle the cooling load and hot water demand. The proposed method, namely epsilon-constrained differential evolution with random jumping, can solve nearly all possible configurations and is a suitable method for the nonlinear configuration used herein because the ground source heat pump has highly nonlinear characteristics and the ground temperature calculation cannot be simplified to a linear formulation. The optimal operations achieved by the proposed method can reduce operating costs by at least 3.78% and at most 12.56% compared to empirical operations. In addition, the proposed method derives the solution rapidly while maintaining high computation accuracy. Therefore, it can be used in practical situations to determine an optimal operating schedule as a day-ahead optimization.

Keywords: Hybrid ground source heat pump (GSHP); Day-ahead optimization; Metaheuristics; Differential evolution; Epsilon-constrained handling method; Optimal heat source operation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301903
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:193:y:2017:i:c:p:466-478

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.02.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:193:y:2017:i:c:p:466-478