EconPapers    
Economics at your fingertips  
 

Improvement in capacity retention of cathode material for high power density lithium ion batteries: The route of surface coating

Xi Ke, Zhuozhuo Zhao, Jun Liu, Zhicong Shi, Yunyong Li, Lingyu Zhang, Haiyan Zhang, Ying Chen, Zaiping Guo, Qihui Wu and Liying Liu

Applied Energy, 2017, vol. 194, issue C, 540-548

Abstract: Using electrical vehicles instead of traditional ones is very important for reducing fossil oil consumption and carbon emissions. Spinel LiNi0.5Mn1.5O4 is considered as a promising cathode material for advanced lithium ion batteries owing to its high power density. Nevertheless, it suffers badly from the interfacial reactions with the electrolyte at high operation potential, which degrades its electrochemical performance. The strategy of the present study is to prevent direct contact between LiNi0.5Mn1.5O4 and the electrolyte by using a surface coating in order to reduce solid electrolyte interfacial reactions and consequently enhance its cycling performance. The experimental results indicated that as-prepared LiNi0.5Mn1.5O4 sintered at 900°C possessed the highest initial specific capacity of 132.4mAh·g−1 at 0.2C rate, with 81.0% initial capacity retention after 50 cycles. Coating AlF3 on the particle surfaces of LiNi0.5Mn1.5O4 using a modified solid-state method can improve its electrochemical properties by enhancing its initial specific capacity from 104.6 to 109.1mAh·g−1 and increasing its capacity retention from 80.6 to 92.1% at the 10C rate after 100 cycles.

Keywords: Electrical vehicles; High power density; Surface coating; Cathode material; Lithium ion battery (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313411
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:194:y:2017:i:c:p:540-548

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.040

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:540-548