EconPapers    
Economics at your fingertips  
 

Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus

Gaopeng Li, Jieli Zhang and Hongwen He

Applied Energy, 2017, vol. 194, issue C, 578-587

Abstract: In this paper, model predictive control (MPC) is employed to resolve the energy management problem of a plug-in hybrid electric bus (PHEB). Dynamic programming (DP), as a global optimization method, is inserted at each time step of the MPC, to solve the optimization problem regarding the prediction horizon. A multi-step Markov prediction model is constructed to forecast the near future driving velocities for the MPC. The battery SOC is restrained to fluctuate near a reference trajectory to ensure the global performance of MPC. Three novel restraining methods are proposed and compared in this paper. The resultant fuel economy performance with different SOC constraint methods are evaluated. Simulation results indicate that by restraining the battery SOC adaptively to the control variables gains the best fuel economy performance, and the fuel consumption of MPC is 8.7% less than a ruled based strategy.

Keywords: Plug-in hybrid electric vehicles; Model predictive control; Markov; Energy management; Battery SOC constraint (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:194:y:2017:i:c:p:578-587

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:578-587