EconPapers    
Economics at your fingertips  
 

Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors

Zhiheng Xu, Yucheng Liu, Isaiah Williams, Yan Li, Fengyu Qian, Lei Wang, Yu Lei and Baikun Li

Applied Energy, 2017, vol. 194, issue C, 80 pages

Abstract: Flat enzyme-based lactate biofuel cell (ELBC) integrated with power management system (PMS) was developed as a potential power supply for wearable sensors. Kinetic models of power output and chemical reagent concentration (lactate oxidase LOx and lactate) were developed to determine the limiting factor of the ELBC performance. Given the lactate concentration (0–40mM) in human sweat, the optimum LOx amount coated on the anode ranged from 6U to 54U based on the experimental maximum power output. In the ELBC-PMS entity simulation test, power discharge/recharge frequency was calculated for self-sustained sensing and data transmission, indicating that the ELBC could support wearable sensors (power requirement: 1–1350mW; signal transfer frequency: 1–1320times/h). The electrochemical activity of LOx coated anode was validated using the cyclic voltammetry (CV). The coefficient of variance and regression statistical analysis revealed the high stability and long lifespan (2weeks) of ELBC without the need of lactate refill.

Keywords: Enzyme lactate biofuel cell (ELBC); Wearable device; Human sweat; Power output; Open circuit potential; Power management system (PMS) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191730003X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:194:y:2017:i:c:p:71-80

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.01.104

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:71-80