EconPapers    
Economics at your fingertips  
 

Ultrathin LiFePO4 nanosheets self-assembled with reduced graphene oxide applied in high rate lithium ion batteries for energy storage

WeiWei Yang, JianGuo Liu, Xiang Zhang, Liang Chen, Yong Zhou and ZhiGang Zou

Applied Energy, 2017, vol. 195, issue C, 1079-1085

Abstract: Liquid-phase ultrasonic exfoliation approach was applied to acquire ultrathin lithium iron (II) phosphate (LiFePO4) nanosheets (LFP-NS) with the thickness of only ∼15nm. The LFP-NS were then self-assembly with graphene oxide (GO) with amido bonds. Ultrashort diffusion pathways to lithium ions (Li+) could be achieved with high percentage of (010) facets exposed to LFP-NS, which reduced the diffusion distance for Li+ along the [010] direction effectively. In addition, the reduced graphene oxide (rGO) firmly adhered to the surface of LFP-NS by self-assemble method after sintering, which formed an excellent conductive network and facilitate electron transportation. The ultrathin diffusion channels into Li+ and tight conductive network resulting in an excellent high rate discharging performance, e.g. up to 102mAhg−1 at 30C, while discharge capacity retention can reach to 93.4% at 20C after 500 cycles. This kind of composite was an ideal cathode material used in high rate lithium ion batteries.

Keywords: LiFePO4; Ultrathin nanosheets; Reduced graphene oxide; Self-assembled; Lithium ion batteries (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308212
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:1079-1085

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.06.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:1079-1085