EconPapers    
Economics at your fingertips  
 

Numerical analysis of a vertical double-pipe single-flow heat exchanger applied in an active cooling system for high-power LED street lights

Gerd Schmid, Zun-Long Huang, Tai-Her Yang and Sih-Li Chen

Applied Energy, 2017, vol. 195, issue C, 426-438

Abstract: The present study examines the use of a vertical double-pipe single-flow heat exchanger as part of an active air cooling system for a 150W LED street light. The air is circulated inside the lamppost by an internal fan to form a closed-loop system. The heat is dissipated to the surrounding air by natural convection, reaching Rayleigh numbers up to Ra=6.5×1010. Experiments with a 5m high prototype were conducted, and the data were used to validate the numerical model. The experimental results show that the LED excess temperature can be lowered to about 42°C. A two-dimensional axisymmetric numerical simulation was performed to study the influence of various parameters, including pipe length, material conductivity, flow direction, pipe diameter ratio, and mass flow rate, on the heat transfer rate. The findings show that the additional heat loss created by extending the lamppost largely depends on the flow rate. When extending the lamppost from 3 to 5m at a high mass flow rate of 0.014kg/s, the heat loss increases by 34.1% to 120.2W. The numerical study was also used to visualize the hydrodynamic boundary layers on the surface of the lamppost and the temperature contours in and outside of the heat exchanger.

Keywords: Forced-air cooling system; Light emitting diode; Double-pipe heat exchanger; Street light; Axisymmetric simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302908
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:426-438

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.03.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:426-438