EconPapers    
Economics at your fingertips  
 

Dynamic time warping based non-intrusive load transient identification

Bo Liu, Wenpeng Luan and Yixin Yu

Applied Energy, 2017, vol. 195, issue C, 634-645

Abstract: Non-intrusive load monitoring (NILM) is a novel and cost-effective technology for monitoring load electricity energy consumption details. In the event-based NILM, transient power waveform (TPW) time-series can be used as signatures to identify the transients of the electrical appliances in the aggregated load, and then to determine their operating states, estimate their power demand and cumulative energy consumption. In this paper, for load transient identification, the dynamic time warping (DTW) algorithm is adopted for the first time to measure the similarity between the variable-length raw TPW sample and template time-series. Accordingly, a nearest neighbor transient identification method is proposed to identify the appliance creating the TPW sample time-series, in which the DTW-based integrated distance is used to measure the similarity of TPW signatures. Three schemes to calculate the integrated distance are designed, combining multiple types of TPW signatures. Comparison tests with existing methods are conducted using public datasets. The comparison test results indicate that the proposed load transient identification method cannot only improve the accuracy of load transient identification, but also is easy to implement at a reasonable cost. Ultimately, the proposed method is implemented in an embedded system. The field test results show that it can identify the operating states of electrical appliances with high accuracy.

Keywords: Non-intrusive load monitoring; Transient power waveform; Dynamic time warping; Nearest neighbor classification; Load transient identification (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:634-645

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.03.010

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:634-645