EconPapers    
Economics at your fingertips  
 

Performance analysis of a supercritical water-cooled nuclear reactor integrated with a combined cycle, a Cu-Cl thermochemical cycle and a hydrogen compression system

Maan Al-Zareer, Ibrahim Dincer and Marc A. Rosen

Applied Energy, 2017, vol. 195, issue C, 646-658

Abstract: A novel integration is proposed and analyzed of a thermochemical water decomposition cycle with a supercritical water-cooled nuclear reactor, a combined cycle, and a hydrogen compression system. The supercritical water-cooled reactor in the integrated system has been investigated extensively in Canada. The integrated system uses a compression system to compress the product hydrogen. The hydrogen is produced via a hybrid thermochemical and electrical water decomposition cycle that utilizes the chemical couple of copper and chlorine. The integrated system is modeled and simulated on Aspen Plus, except for the steam circuit, which is simulated on Aspen Hysys. The hydrogen production rate from the proposed system is 3.56kg/s. Both energy and exergy analyses are performed of the integrated system, and its overall energy and exergy efficiencies are, in this regard, found to be 16.9% and 27.8%, respectively.

Keywords: Hydrogen production; Energy; Exergy; Efficiency; Nuclear power; Copper-chlorine cycle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302817
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:646-658

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.03.046

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:646-658