Prediction of electric vehicle charging-power demand in realistic urban traffic networks
Mariz B. Arias,
Myungchin Kim and
Sungwoo Bae
Applied Energy, 2017, vol. 195, issue C, 738-753
Abstract:
This paper presents a time-spatial electric vehicle (EV) charging-power demand forecast model at fast-charging stations located in urban areas. Most previous studies have considered private charging locations and a fixed charging-start time to predict the EV charging-power demand. Few studies have considered predicting the EV charging-power demand in urban areas with time-spatial model analyses. The approaches used in previous studies also may not be applicable to predicting the EV charging-power demand in urban areas because of the complicated urban road network. To possibly forecast the actual EV charging-power demand in an urban area, real-time closed-circuit television (CCTV) data from an actual urban road network are considered. In this study, a road network inside the metropolitan area of Seoul, South Korea was used to formulate the EV charging-power demand model using two steps. First, the arrival rate of EVs at the charging stations located near road segments of the urban road network is determined by a Markov-chain traffic model and a teleportation approach. Then, the EV charging-power demand at the public fast-charging stations is determined using the information from the first step. Numerical examples for the EV charging-power demand during three time ranges (i.e., morning, afternoon, and evening) are presented to predict the charging-power demand profiles at the public fast-charging stations in urban areas. The proposed time-spatial model can also contribute to investment and operation plans for adaptive EV charging infrastructures with renewable resources and energy storage depending on the EV charging-power demand in urban areas.
Keywords: Electric vehicle charging-power demand; Markov-chain traffic model; Charging patterns; Real-time closed-circuit television data; Urban area (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301459
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:738-753
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.02.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().