EconPapers    
Economics at your fingertips  
 

Prediction of electric vehicle charging-power demand in realistic urban traffic networks

Mariz B. Arias, Myungchin Kim and Sungwoo Bae

Applied Energy, 2017, vol. 195, issue C, 738-753

Abstract: This paper presents a time-spatial electric vehicle (EV) charging-power demand forecast model at fast-charging stations located in urban areas. Most previous studies have considered private charging locations and a fixed charging-start time to predict the EV charging-power demand. Few studies have considered predicting the EV charging-power demand in urban areas with time-spatial model analyses. The approaches used in previous studies also may not be applicable to predicting the EV charging-power demand in urban areas because of the complicated urban road network. To possibly forecast the actual EV charging-power demand in an urban area, real-time closed-circuit television (CCTV) data from an actual urban road network are considered. In this study, a road network inside the metropolitan area of Seoul, South Korea was used to formulate the EV charging-power demand model using two steps. First, the arrival rate of EVs at the charging stations located near road segments of the urban road network is determined by a Markov-chain traffic model and a teleportation approach. Then, the EV charging-power demand at the public fast-charging stations is determined using the information from the first step. Numerical examples for the EV charging-power demand during three time ranges (i.e., morning, afternoon, and evening) are presented to predict the charging-power demand profiles at the public fast-charging stations in urban areas. The proposed time-spatial model can also contribute to investment and operation plans for adaptive EV charging infrastructures with renewable resources and energy storage depending on the EV charging-power demand in urban areas.

Keywords: Electric vehicle charging-power demand; Markov-chain traffic model; Charging patterns; Real-time closed-circuit television data; Urban area (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917301459
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:738-753

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.02.021

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:738-753