Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes
Austin L. Nash,
Apurva Badithela and
Neera Jain
Applied Energy, 2017, vol. 195, issue C, 877-889
Abstract:
In this paper we consider control-oriented modeling of a sensible thermal energy storage (TES) tank with a helical immersed heat exchanger (IHX) coil. A key focus of the modeling approach is to minimize the number of dynamic states required to adequately describe the system dynamics. The resulting model is well-suited for model-based control design, real-time simulation, and hardware-in-the-loop testing aimed at intelligent operation of TES systems. We use a discretized approach to model the temperature dynamics of the water within the storage tank. We use a quasi-steady approach to model the IHX coil dynamics, thereby limiting computational complexity. In simulation, the model runs up to 1200× faster than real-time. A simulated case study of model-based feedback control demonstrates the utility of the modeling approach. The model contains four tuning parameters that are empirically determined using experimental data collected from a commercially available domestic hot water storage tank. The model is then validated, both temporally and spatially, against data collected during the simultaneous charge/discharge mode. Finally, we quantify the trade-off between model fidelity and increased control volume discretization, showing that a 60 node model yields a RMSE value under 4.5%.
Keywords: Dynamic modeling; Control-oriented modeling; Thermal energy storage; Immersed heat exchanger; Hot water storage tank; Waste heat recovery; Demand response (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917303343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:877-889
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.03.092
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().