EconPapers    
Economics at your fingertips  
 

A comparative study on the applicability of ultracapacitor models for electric vehicles under different temperatures

Chun Wang, Hongwen He, Yongzhi Zhang and Hao Mu

Applied Energy, 2017, vol. 196, issue C, 268-278

Abstract: This paper presents a systematic evaluation for five typical equivalent circuit models (ECMs) of ultracapacitors (UCs) under different ambient temperatures. A comprehensive experimental profile is designed to obtain the test datasets. The genetic algorithm (GA) is employed to identify the model parameters for five UC models under different temperatures and state of charge (SOCs). Three results can be obtained from the systematic analysis. (1) Due to the better model accuracy and robustness, the Thevenin model is preferred for UC cell modeling with the maximum errors less than 8mV. (2) Compared with the other four UC models, the Thevenin model with one-state hysteresis (Thevenin-hys model) is preferred for UC pack modeling because of its better performance. (3) From the point of view of model accuracy and robustness against different ambient temperatures, if the SOC is less than 0.5, the UCs are not suitable for further application.

Keywords: Equivalent circuit model; Ultracapacitor; Electric vehicles; Temperature; Experiment (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302787
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:196:y:2017:i:c:p:268-278

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.03.060

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:196:y:2017:i:c:p:268-278