EconPapers    
Economics at your fingertips  
 

An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses

Shanshan Xie, Hongwen He and Jiankun Peng

Applied Energy, 2017, vol. 196, issue C, 279-288

Abstract: Model predictive control (MPC) can effectively solve online optimization issues, even with various constraints, when maintained at high robustness. Considering the energy management issue of plug-in hybrid electric bus (PHEB) as a constrained nonlinear optimization problem, a strategy based on stochastic model predictive control (SMPC) is put forward and verified in this paper. Firstly, Markov Chain Monte Carlo Method (MCMC) is adopted to forecast velocity sequences at every current state, in the form of multi scale single step (MSSS), with post-processing algorithms to moderate fluctuations of the prediction results like average filtering, quadratic fitting, and the like. The offline simulation results show that the optimization can effectively improve the predictive accuracy, make the following energy management feasible and reduce the fuel consumption by 1.9%. Then the SMPC-based energy management strategy is proposed. In order to prevent the driving cycle state deficiencies from interrupting the prediction for practical application, a state reconstitution method is constructed accordingly. Besides, the predictive steps are made time-varying by an online accuracy estimation method and a corresponding threshold to maintain the accuracy of forecast. Finally, the hardware-in-the-loop (HIL) experiments are conducted and the results show that the SMPC-based strategy is reasonable and the fuel consumption decreases by 3.9% further with variable predictive steps than that of fixed ones. In summary, this paper illustrates an effective SMPC-based methodology for energy management for PHEB, and techniques like MSSS prediction with post-processing, state reconstitution method, online accuracy estimation can be adopted to solve similar problems.

Keywords: Stochastic model predictive control; Markov Chain Monte Carlo Method; Plug-in hybrid electric bus; Energy management strategy; Hardware-in-the-loop experiment (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (63)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916318888
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:196:y:2017:i:c:p:279-288

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.12.112

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:196:y:2017:i:c:p:279-288