EconPapers    
Economics at your fingertips  
 

Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method

Jing Zhao, Yanling Guo, Xia Xiao, Jianzhou Wang, Dezhong Chi and Zhenhai Guo

Applied Energy, 2017, vol. 197, issue C, 183-202

Abstract: At present, operational power forecasts are primarily based on the predicted wind speed of a single-valued deterministic Numerical Weather Prediction (NWP) simulation. However, due to the unavoidable uncertainties from model initialization and/or model imperfections, recent numerical techniques cannot directly meet the actual needs of grid dispatch in many cases, which means that achieving accurate forecasts of wind speed and power is still a critical issue. On this topic, our paper contributes to the development of a new multi-step forecasting method termed CSFC-Apriori-WRF, providing a one-day ahead wind speed and power forecast consisting of 96 steps. This method is based on a Weather Research and Forecasting (WRF) simulation, a Cuckoo search (CS) optimized fuzzy clustering, and an Apriori association process. First, a wind speed forecast is generated by running a configured WRF model. Next, the wind speed forecasting series is divided into segments that meet certain conditions and are defined as “waves” in this paper. Next, combining the CS-optimized fuzzy clustering and Apriori algorithm, the proposed method extracts the association rules between the shape characteristics and the forecasting error of the divided waves. Applying the association rules in the final optimization process, the proposed method significantly reduces the uncertainties of the WRF simulation and performs best among other models to which it is compared.

Keywords: Operation wind forecast; Fuzzy clustering; Artificial intelligence; Apriori algorithm; WRF correction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917304105
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:197:y:2017:i:c:p:183-202

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.04.017

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:197:y:2017:i:c:p:183-202