Economics at your fingertips  

Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system

Lisa Göransson, Joel Goop, Mikael Odenberger and Filip Johnsson

Applied Energy, 2017, vol. 197, issue C, 230-240

Abstract: A regional cost-minimizing investment model that accounts for cycling properties (i.e., start-up time, minimum load level, start-up cost and emissions, and part-load costs and emissions) is developed to investigate the impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system. The model is applied to an electricity system that is rich in wind resources with and without accounting for cycling in two scenarios: one with favorable conditions for flexible bio-based generation (Bio scenario); and one in which base load is favored (Base load scenario) owing to high prices for biomass. Both scenarios are subject to a tight cap on carbon dioxide emissions, limiting the investment options to technologies that have low or no carbon emissions.

Keywords: Electricity system model; Thermal cycling; Intermittent generation; Investment model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-12-16
Handle: RePEc:eee:appene:v:197:y:2017:i:c:p:230-240