Clean combustion of n-butanol as a next generation biofuel for diesel engines
Xiaoye Han,
Zhenyi Yang,
Meiping Wang,
Jimi Tjong and
Ming Zheng
Applied Energy, 2017, vol. 198, issue C, 347-359
Abstract:
This work investigates the applicability of n-butanol as a next generation biofuel to replace diesel in compression ignition engines for efficient operation, pollutant mitigation, and CO2 reduction. A high compression ratio (18.2:1) diesel research engine is configured to run on neat n-butanol. Due to the fuel property departure from diesel, n-butanol combustion exhibits striking combustion characteristics. Alternative combustion strategies, including via partially premixed compression ignition and homogeneous charge compression ignition, are enabled efficiently owing to distinctive fuel properties of n-butanol. The compression ignition of the (partially) premixed n-butanol and air mixture is capable of producing diesel-like engine efficiency and significant nitrogen oxide and smoke reductions. As the engine load increases, however, such neat n-butanol combustion exhibits rapid burning and suffers abrupt pressure rise. Thereby the engine load is generally limited below 50% of the baseline capability. A split-combustion strategy, which employs multiple event fuel injections, is found to be effective to modulate the noise of n-butanol clean combustion, thereby enabling neat n-butanol application across the full engine load range.
Keywords: n-Butanol; Next generation biofuel; Engine efficiency; CO2 reduction; Clean combustion; Full load capability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916318219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:198:y:2017:i:c:p:347-359
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.059
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().