EconPapers    
Economics at your fingertips  
 

An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales

Tasseda Boukherroub, Luc LeBel and Sébastien Lemieux

Applied Energy, 2017, vol. 198, issue C, 385-400

Abstract: An approach to developing a wood pellet supply chain (SC) which selects among several sources of biomass feedstock is proposed. The approach is based on a downstream to upstream analysis of the SC and includes five phases: (1) Identifying potential markets and projected demands. (2) Determining feedstock types, locations, and available quantities. (3) Evaluation of raw material and final product transportation options, potential plant location, and logistics components that can be integrated with existing forest products SCs. (4) Cost estimation of raw material supply, production, and final product delivery. (5) Utilizing a spatially explicit optimization and generic model to determine the optimal operational conditions under which the wood pellet SC is profitable while taking into account economies of scale. The model selects the best feedstock locations and determines the optimal quantities to supply as well as the optimal production capacity. The associated ROI is calculated to assess economic feasibility. To show the value of the approach, we applied it to a real case study proposed by a regional development agency interested in developing the wood pellet sector in Eastern Canada. The results show that implementing a 100,000-tonne plant using biomass harvested in the forest as the sole feedstock is profitable. However, harvesting costs must be shared among the pellet mill and other forest companies and the government must provide financial support. The use of sawmill residues in the mix of feedstock allows implementing a highly profitable 50,000-tonne plant without any government support or harvesting cost sharing mechanism. Under a high wood pellet selling price, harvesting cost sharing and government support, the production capacity can reach 150,000tonnes/year. An important finding is that government support is not necessary for ensuring profitability in all cases. Government support has a significant impact on profitability in the case where sawmill residues are not available as a feedstock for manufacturing pellets or the selling price is high enough to allow operating a profitable plant of large size.

Keywords: Woody biomass; Wood pellets; Forest industry; Integrated supply chain; Logistics; Economic feasibility; LogiLab (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631772X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:198:y:2017:i:c:p:385-400

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.12.013

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:198:y:2017:i:c:p:385-400