Synergies and trade-offs in renewable energy landscapes: Balancing energy production with economics and ecosystem services
Rebecca J. Hanes,
Varsha Gopalakrishnan and
Bhavik R. Bakshi
Applied Energy, 2017, vol. 199, issue C, 25-44
Abstract:
Sustainable design methods focus on reducing or minimizing the demand for ecosystem goods and services, quantified as natural resources and pollutant mitigation. However, the capacity of ecosystems to supply these demands is routinely ignored, leading to decisions that overburden ecological processes and cause environmental damage. This work develops a techno-ecological synergy (TES) design methodology that balances the ecosystem services that can be provided by nature with the ecosystem service demands created by human activities. The methodology includes the design of technological processes that require ecosystem services as well as the ecological processes that supply those services. The TES Design methodology is demonstrated by application to a renewable energy production system that includes both land use activities, such as agriculture and wind turbines, and biomass conversion activities such as corn ethanol and soybean biodiesel. Under TES Design, the system is optimized to balance the demand and supply of ecosystem services, within constraints imposed on energy production and system economics. The system is also optimized under a more conventional approach that reduces ecosystem service demand while neglecting ecosystem service supply and the relevant ecological processes. Results show that only the TES methodology produces system designs in which ecosystem service supply meets or exceeds the demand. TES system designs produce the same amount of energy as conventional designs, have similar system economics, and use land both for energy production and for ecosystem service supply. The additional supply enables the use of intensive agricultural practices with higher ecosystem service demands and higher biomass yields. These results encourage further efforts toward TES Design with additional ecosystem services.
Keywords: Ecosystem services; Sustainability; Renewable energy; Land use trade-offs (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917304786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:199:y:2017:i:c:p:25-44
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.04.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().