Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study
Martin Schmelas,
Thomas Feldmann and
Elmar Bollin
Applied Energy, 2017, vol. 199, issue C, 294-309
Abstract:
The building sector is one of the main consumers of energy. Therefore, heating and cooling concepts for renewable energy sources become increasingly important. For this purpose, low-temperature systems such as thermo-active building systems (TABS) are particularly suitable. This paper presents results of the use of a novel adaptive and predictive computation method, based on multiple linear regression (AMLR) for the control of TABS in a passive seminar building. Detailed comparisons are shown between the standard TABS and AMLR strategies over a period of nine months each. In addition to the reduction of thermal energy use by approx. 26% and a significant reduction of the TABS pump operation time, this paper focuses on investment savings in a passive seminar building through the use of the AMLR strategy. This includes the reduction of peak power of the chilled beams (auxiliary system) as well as a simplification of the TABS hydronic circuit and the saving of an external temperature sensor. The AMLR proves its practicality by learning from the historical building operation, by dealing with forecasting errors and it is easy to integrate into a building automation system.
Keywords: Thermo-activate building system (TABS); Adaptive predictive control; Multiple regression; Thermal comfort; Energy savings; Investment savings (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917305408
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:199:y:2017:i:c:p:294-309
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.05.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().