EconPapers    
Economics at your fingertips  
 

A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage – A dynamic simulation study

Bin Chen, Haoran Xu, Houcheng Zhang, Peng Tan, Weizi Cai and Meng Ni

Applied Energy, 2017, vol. 200, issue C, 260-272

Abstract: This paper proposes a novel solid oxide steam electrolyser with in-situ hydrogen storage by integrating a magnesium hydride (MH) section with proton-conducting solid oxide electrolysis cell (SOEC) section. Dynamic simulation results show that it takes 1950 s to fully charge the MH section with a 56% H2 storage efficiency without any flow recirculation, when the electrolyser is operated at 1.4V and 4atm, yielding a current density of 4956.40 A/m2. The evolution of temperature, H2 partial pressure and reaction of Mg powder through the charging process are analysed. It is found that the exothermic H2 absorption process of MH section can enhance the performance of the electrolysis process of SOEC section. The effects of operating parameters including operating pressure, electrolysis voltage, and cooling air temperature on the performance of the novel design are investigated by sensitivity studies. Results show that it is beneficial to operate the electrolyser at elevated pressure for shorter absorption time and higher H2 storage efficiency. Increasing the operating voltage can shorten the absorption time, but lower H2 storage efficiency. An optimal cooling air temperature is found at 521K when the electrolyser is operated at 1.4V and 4atm.

Keywords: Solid oxide fuel cell (SOFC); Metal hydride; Hydrogen storage; Dynamic simulation (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917305937
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:200:y:2017:i:c:p:260-272

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.089

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:200:y:2017:i:c:p:260-272