EconPapers    
Economics at your fingertips  
 

Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system

Jianwei Li, Rui Xiong, Qingqing Yang, Fei Liang, Min Zhang and Weijia Yuan

Applied Energy, 2017, vol. 201, issue C, 257-269

Abstract: Frequency dynamics, occurring due to the high penetration of the renewable energy in the microgrid (MG) are of great concern to the system dynamic stability. The battery energy storage systems are reported to have a good frequency regulating ability in the off-grid microgrid systems. However, to compensate the power irregularities, the battery is needed to charge and discharge at a high frequency, which degrades its lifetime significantly. In addition, in the primary frequency control (PFC) the battery needs to deal with the abrupt power changes, which will also accelerate the battery degradation process. In this regard, this paper presents a new concept of primary frequency control by integrating the superconducting magnetic energy storage (SMES) with battery, thus achieving the ability of not only performing a good frequency regulating function but also extending the battery service time. A novel power sharing method using the dynamic droop factors to control charge/discharge prioritization between the SMES and the battery is proposed and has been proved to have a better operation than the preceding droop control. A microgrid system based on the case of Uligam Island of Maldives is developed in the PSCAD, verifying the performance of PFC with the hybrid energy storage system (HESS) using the dynamic droop control. The results show that the HESSs have a better frequency regulating ability and the proposed dynamic droop control is capable of exploiting the different characteristics of both SMES and battery, forming a kind of complementary hybrid energy storage system. Moreover, the battery in the new control scheme is better protected from the short-term frequent cycles and abrupt currents, hence has been proved to have a longer lifetime extension.

Keywords: Battery lifetime extension; Dynamic droop control; Hybrid energy storage system (HESS); Microgrid; Primary frequency control (PFC); Superconducting magnetic energy storage (SMES) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:201:y:2017:i:c:p:257-269

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.10.066

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:257-269