EconPapers    
Economics at your fingertips  
 

Optimization design of heat recovery systems on rotary kilns using genetic algorithms

Qian Yin, Wen-Jing Du and Lin Cheng

Applied Energy, 2017, vol. 202, issue C, 153-168

Abstract: Heat loss from rotary kilns accounts for certain amounts of the total energy consumption in chemical and metallurgical industries. To reduce the heat loss, a parallel and a series-parallel heat recovery systems with nine heat recovery exchangers are proposed to preheat the cold water in this paper. Experimental measurements are carried out to determine the heat transfer coefficient equations of each heat recovery exchanger. Then, the heat recovery systems are analyzed to deduce the mathematic relation between the design parameters and the system requirements, i.e. the temperatures and heat transfer rates of the nine heat recovery exchangers. The total heat transfer area, the total power consumption and the entropy generation due to heat transfer and fluid flow are set as the objective functions in four multi-objective optimization (MOO) cases. With the aid of the genetic algorithm in the Matlab 2015, the optimized operational and structural parameters are obtained. Finally, the MOO results are compared with that of the single objective optimization (SOO) method and the original values. The optimization results show that the MOO method are more suitable for the operational parameters design of the heat recovery systems compared with the SOO method. The required total heat transfer area and the total power consumption are decreased by at least 12.1% and 13.7%, respectively. Besides, as the entropy generation due to heat transfer and fluid flow decrease in the MOO cases, the corresponding heat transfer area and power consumption of the heat recovery system decrease, respectively.

Keywords: Energy conservation; Rotary kilns; Heat recovery system; Multi-objective optimization; Genetic algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917305664
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:153-168

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.072

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:153-168