EconPapers    
Economics at your fingertips  
 

A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion

Hamidreza Mahabadipour, Kalyan K. Srinivasan and Sundar R. Krishnan

Applied Energy, 2017, vol. 202, issue C, 199-212

Abstract: While dual fuel low temperature combustion (LTC) has been studied before, a detailed second law analysis of dual fuel LTC is not yet available in the open literature. To address this gap, a previously validated, closed-cycle, multi-zone, simulation of diesel-natural gas dual fuel LTC was used to perform a second law analysis. For the present study, a 2.4-l single-cylinder research engine operating at a nominal load of 6bar BMEP and 1700rpm was used. Zone-wise thermodynamic irreversibilities as well as total cumulative entropy generated and lost available work over the closed cycle were quantified. Subsequently, two convenient second-law parameters were defined: (1) the “lost available indicated mean effective pressure” (LAIMEP), which can be interpreted as an engine-size-normalized measure of available work that is lost due to thermodynamic irreversibilities (analogous to the relationship between indicated mean effective pressure and indicated work); (2) fuel conversion irreversibility (FCI), which is defined as the ratio of lost available work to total fuel chemical energy input. Finally, parametric studies were performed to quantify the effects of diesel start of injection, intake manifold temperature, and intake boost pressure on LAIMEP and FCI. The results show that significant entropy generation occurred in the flame zone (52–61 percent) and the burned zone (31–39 percent) while packets account for less than 6 percent of the overall irreversibilities. Parametric studies showed LAIMEPs in the range of 645–768kPa and FCIs in the range of 32.8–39.2 percent at different engine operating conditions. Although the present study focused on dual fuel LTC, the conceptual definitions of LAIMEP and FCI are generally applicable for comparing the thermodynamic irreversibilities of IC engines of any size and operating on any combustion strategy.

Keywords: Second law analysis; Low temperature combustion; Dual fuel; Multi zone simulation; Irreversibilities; Lost available work (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917306864
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:199-212

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.154

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:199-212