EconPapers    
Economics at your fingertips  
 

Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge

Nazlina Haiza Mohd Yasin, Azusa Ikegami, Thomas K. Wood, Chang-Ping Yu, Tetsuya Haruyama, Mohd Sobri Takriff and Toshinari Maeda

Applied Energy, 2017, vol. 202, issue C, 399-407

Abstract: The dissolved CO2 that causes ocean acidification has great potential for bioenergy production. In this study, we demonstrate that activated methanogens in waste sewage sludge (WSS) are useful for converting bicarbonate in seawater into methane. These activated methanogens were adapted in different seawater sources for methane production through repeated batch experiments that resulted in an increase of 300–400 fold in the methane yield. During these repeated batch experiments, the microbial communities in WSS adapted to the high salinity of seawater to generate more methane. Microbial community analysis showed the dominance of Achromobacter xylosoxidans, Serrati sp. and methanogens including Methanobacterium sp., Methanosarcina sp., and Methanosaeta concillii. Using a 13C-labeled isotope, we demonstrate that 81% of the methane is derived from microbial conversion of NaH13CO2 in artificial seawater. Therefore, this study shows that oceans, with the largest surface area on Earth, have a potential as a substrate for methane energy production via an acclimated consortium approach.

Keywords: Carbon dioxide; Ocean acidification; Methanogens; Waste sewage sludge; Methane (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307286
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:399-407

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-10-01
Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:399-407