EconPapers    
Economics at your fingertips  
 

Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell

P. Ribeirinha, M. Abdollahzadeh, J.M. Sousa, M. Boaventura and A. Mendes

Applied Energy, 2017, vol. 202, issue C, 6-19

Abstract: A 3-dimensional non-isothermal simulator comprising a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) and a methanol steam-reforming cell (MSR-C) was developed in Fluent (Ansys™). The simulator takes into account most of the significant physical processes, including the electrochemical reactions and carbon monoxide poisoning effect on the electro-catalytic activity of the FC; it also considers the methanol steam reforming (MSR), water gas shift (WGS) and methanol decomposition (MD) reactions in the MSR-C. The developed model for the integrated MSR-C/HT-PEMFC unit was simulated between 443K and 473K and validated with experimental results reported in the literature, showing always a very good agreement. The thermal sustainability of the MSR-C/HT-PEMFC unit was assessed, and the role of the thermal insulation and air intake (cathode) stoichiometry in the thermal equilibrium of the device were analysed. A novel integrated MSR-C/HT-PEM stack with ten cells was proposed and simulated, showing a performance above the reported in the literature for similar devices. The results indicated that the proposed stack operates at currents between 4.5A (0.1Acm−2) and 54A (1.2Acm−2) without any external heat source. To minimize the degradation of the components the stack should adapt the operating temperature to the current density.

Keywords: Modelling; CO poisoning; Methanol steam reforming; Integration; HT-PEMFC; Stack (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917306244
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:6-19

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.120

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:6-19