Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology
Laleh Nazari,
Zhongshun Yuan,
Madhumita B. Ray and
Xu, Chunbao (Charles)
Applied Energy, 2017, vol. 203, issue C, 10 pages
Abstract:
The present paper examines the co-conversion of waste activated sludge and birchwood sawdust to bio-oil via hydrothermal liquefaction. The purpose of using the sawdust with sludge was to increase the solids concentration using another waste material for possible resource recovery. The operating conditions including reaction temperature, reaction time and solids concentration were optimized based on the response surface methodology for the maximum bio-oil production. A maximum of 33.7wt% bio-oil yield was obtained at optimum operating conditions of 310°C, 10min, and 10wt% concentration. Comparison of this oil with the oil produced from only sawdust showed a significant improvement in the molecular weight of the bio-oil by having lower molecular weight (hence less viscosity), indicating the presence of lighter components, with a slight decrease in bio-oil yield. The optimized operating condition could be used to effectively co-liquefy waste activated sludge and sawdust with the advantage of producing higher quality bio-oil with respect to molecular weight. The water-soluble product which is the largest fraction of by-products from the co-conversion was tested as a feedstock for biogas production through anaerobic digestion and resulted in 800ml bio-methane production per 0.816g of TOC or 2.09g of COD of this waste stream.
Keywords: Hydrothermal liquefaction; Bio-oil; Waste activated sludge; Sawdust; Optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307596
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:1-10
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.06.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().