EconPapers    
Economics at your fingertips  
 

Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics

R. Naseer, H.L. Dai, A. Abdelkefi and L. Wang

Applied Energy, 2017, vol. 203, issue C, 142-153

Abstract: The concept of harvesting energy from vortex-induced vibrations (VIVs) by introducing nonlinear attractive magnetic forces is proposed and investigated for the first time. The objective is to design broadband synchronization regions for efficient piezoelectric energy harvesting from VIVs of circular cylinders. A lumped-parameter model is constructed by coupling the dynamics of the energy harvesting system subjected to VIV with the generated voltage across the electrical load resistance. A modified van der Pol wake oscillator is considered for modeling the vortex-induced fluctuating lift force. The magnetic force representation is based on the dipole-dipole interaction. Firstly, the effects of the spacing distance between the two magnets on the buckling configuration of the energy harvester is studied through a static analysis. Then, a linear analysis is performed to determine the impacts of the spacing distance on the natural frequency and damping ratio of the energy harvester in the monostable configuration. A nonlinear dynamic analysis is carried out to determine the impacts of the spacing distance and electrical load resistance on the output performance of the harvester in terms of the synchronization region and levels of the harvested power. The results show that changing the spacing distance produces a variation of the natural frequency and hence a shift of the lock-in region, which is significant for low wind speed energy harvesting. Furthermore, it is demonstrated that depending on the available wind speed in the environment, the spacing distance and load resistance can be adjusted for efficient and broadband energy harvesting from VIV.

Keywords: Vortex-induced vibration; Energy harvesting; Broadband; Monostable; Lock-in region (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:142-153

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.06.018

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:142-153