EconPapers    
Economics at your fingertips  
 

Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway

Paul T. Coman, Eric C. Darcy, Christian T. Veje and Ralph E. White

Applied Energy, 2017, vol. 203, issue C, 189-200

Abstract: This paper presents a numerical model used for analyzing heat propagation as a safety feature in a custom-made battery pack. The pack uses a novel technology consisting of an internal short circuit device implanted in a cell to trigger thermal runaway. The goal of the study is to investigate the importance of wrapping cylindrical battery cells (18650 type) in a thermally and electrically insulating mica sleeve, to fix the cells in a thermally conductive aluminum heat sink. By modeling the full-scale pack using a 2D model and coupling the thermal model with an electrochemical model, good agreement with a 3D model and experimental data was found (less than 6%). The 2D modeling approach also reduces the computation time considerably (from 11h to 25min) compared to using a 3D model. The results showed that the air trapped between the cell and the boreholes of the heat sink provides a good insulation which reduces the temperature of the adjacent cells during thermal runaway. At the same time, a highly conductive matrix dissipates the heat throughout its thermal mass, reducing the temperature even further. It was found that for designing a safe battery pack which mitigates thermal runaway propagation, a combination of small insulating layers wrapped around the cells, and a conductive heat sink is beneficial.

Keywords: Propagation; Internal short circuit device; Battery pack; 18650; Safety; Air gap (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307766
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:189-200

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.06.033

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:189-200