Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway
Paul T. Coman,
Eric C. Darcy,
Christian T. Veje and
Ralph E. White
Applied Energy, 2017, vol. 203, issue C, 189-200
Abstract:
This paper presents a numerical model used for analyzing heat propagation as a safety feature in a custom-made battery pack. The pack uses a novel technology consisting of an internal short circuit device implanted in a cell to trigger thermal runaway. The goal of the study is to investigate the importance of wrapping cylindrical battery cells (18650 type) in a thermally and electrically insulating mica sleeve, to fix the cells in a thermally conductive aluminum heat sink. By modeling the full-scale pack using a 2D model and coupling the thermal model with an electrochemical model, good agreement with a 3D model and experimental data was found (less than 6%). The 2D modeling approach also reduces the computation time considerably (from 11h to 25min) compared to using a 3D model. The results showed that the air trapped between the cell and the boreholes of the heat sink provides a good insulation which reduces the temperature of the adjacent cells during thermal runaway. At the same time, a highly conductive matrix dissipates the heat throughout its thermal mass, reducing the temperature even further. It was found that for designing a safe battery pack which mitigates thermal runaway propagation, a combination of small insulating layers wrapped around the cells, and a conductive heat sink is beneficial.
Keywords: Propagation; Internal short circuit device; Battery pack; 18650; Safety; Air gap (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307766
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:189-200
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.06.033
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().