Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights
Aikun Tang,
Jiang Deng,
Tao Cai,
Yiming Xu and
Jianfeng Pan
Applied Energy, 2017, vol. 203, issue C, 635-642
Abstract:
In order to improve the working performance and fuel adaptability of the micro-combustor, micro-planar combustors with different channel-heights are fabricated, and the three-dimensional calculation model is also built so as to study the basic characteristics of the blended propane/hydrogen combustion process. It is found that the hydrogen-addition method can overcome the shortcomings of propane flame instability under micro-scale conditions. When a small amount of hydrogen is added, the flame location could be fixed due to the stimulation of the important free radical like OH, thus obviously bringing the increase of mixture flammability range. The hydrogen-enriched fuel can further reduce the minimum flammable channel-height of propane. When the hydrogen addition ratio reaches 20%, a stable combustion will be achieved even in 1.5mm channel-height micro-combustor. Regardless of the 2.0mm or 2.5mm channel-height combustor, the effect of hydrogen addition will be better, and the flame location moves upstream gradually with the increase of hydrogen fraction. From the view of chemical energy utilization, the 2.0mm height combustor will be more suitable in the blended-fuel combustion mode, which is owing to the significant growth of the radiant energy output from the external wall.
Keywords: Micro-combustion; Hydrogen addition; Flame stability; Flammability range; Channel-height; Temperature distribution (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307493
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:635-642
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.05.187
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().