EconPapers    
Economics at your fingertips  
 

Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine

Longfei Chen, Shirun Ding, Haoye Liu, Yiji Lu, Yanfei Li and Anthony Paul Roskilly

Applied Energy, 2017, vol. 203, issue C, 100 pages

Abstract: Aviation Piston Engines for small general aviation aircrafts are currently facing a transition from being powered by AVGAS (aviation gasoline) to being powered by heavy fuels (diesel or kerosene). The present study compared the combustion and emission characteristics of diesel, aviation kerosene rocket propellant 3 (RP-3) and RP-3-pentanol blends in a single cylinder compression ignition (CI) engine. Heat release rate, indicated thermal efficiency, ignition delay, combustion duration, and coefficient of variation (COV) of indicated mean effective pressure were experimentally determined to reflect the engine combustion performance. The results demonstrated the feasibility of RP-3 and its mild pentanol blend (20% by volume) in modern CI engines whilst further optimisation of the injection strategy is needed if a higher ratio of pentanol (40% by volume) is used. The discrepancy in terms of combustion and emissions between diesel, RP-3 and its pentanol blends are appreciable, especially for ignition delay, combustion duration and soot emissions. Compared with diesel, RP-3 improved the indicated thermal efficiency by 1.4–12.4%, but pentanol addition decreased that by 1–6.5%. RP-3 and its pentanol blends reduced the soot emissions by nearly an order of magnitude at high engine loads compared with diesel without evident impact on nitrogen oxide (NOx) emissions. Meanwhile, Carbon monoxide (CO) and total hydrocarbon (THC) emissions of RP-3 and its pentanol blends experienced a significant increase at low loads, but CO showed a slight decrease at high loads.

Keywords: Heavy fuel aviation piston engines; Aviation kerosene; Pentanol; Compression ignition; Combustion analysis; Emissions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307900
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:203:y:2017:i:c:p:91-100

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.06.036

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:91-100