Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors
Bo Wang,
Yizhou Jiang,
Peter Hutchins,
Tawfik Badawy,
Hongming Xu,
Xinyu Zhang,
Alexander Rack and
Paul Tafforeau
Applied Energy, 2017, vol. 204, issue C, 1215-1224
Abstract:
Injector deposit is a common phenomenon for gasoline direct ignition (GDI) engines that greatly affects the spray behavior and consequently the combustion performance and emissions. In this study, the effect of deposit on both the in-nozzle flow dynamics and downstream spray behaviors was numerically investigated. High-resolution X-ray microtomographic scans were performed first to obtain nozzle and deposit morphologies and topology. In-nozzle simulation was then carried out in the Euler-Euler framework with cavitation taken into account by a homogeneous relaxation model (HRM). Finally, the effect of deposit on spray behaviors was evaluated in the Euler-Lagrangian framework, coupled with the in-nozzle simulation results. Results of the nozzle flow simulations highlight that the rough surface of the deposits leads to additional cavitation inception and restricts the flow area, causing mass flow rate losses. Deposits inside the counterbore act as an extension to the inner orifice and constrain the air recirculation. Turbulent levels at the exit of the counterbore are lower for the coked injector due to the reduced air/fuel interaction. Spray simulations have shown that deposits would lead to longer spray penetration, a smaller spray cone angle and larger droplets diameters. Simulation results agree reasonably well with the available experimental data.
Keywords: Deposit; Nozzle; Cavitation; CFD; GDI; X-ray (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917303355
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:204:y:2017:i:c:p:1215-1224
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.03.094
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().