EconPapers    
Economics at your fingertips  
 

Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems

Evan M. Wanjiru, Sam M. Sichilalu and Xiaohua Xia

Applied Energy, 2017, vol. 204, issue C, 1333-1346

Abstract: Energy and water are two inseparable resources that are crucial for human survival, yet, most developing nations are struggling to reliably provide them to the population especially in rapidly growing urban areas. Increasing demand is forcing governments, organizations and private sectors to encourage end-users to increase efficiency and conservation measures for these resources. Water heating is one of the largest energy users in residential buildings thus has a huge potential to improve the efficiency of both energy and water. In this regard, heat pump water heaters (HPWHs) have been found to improve energy efficiency while providing domestic hot water. However, impediments such as optimal operation, integration and high initial cost especially in developing nations hinder their uptake. Further, since they are normally centrally located in a house, there are water and associated energy losses during hot water conveyance to the end-use, as the once hot water in the pipes that cooled off has to be poured away while end-user awaits for hot water. Therefore, this paper advances the previously developed open loop optimal control model by using the closed-loop model predictive control (MPC) to operate a HPWH and instantaneous shower powered using integrated renewable energy systems. This control strategy has the benefit of robustly and reliably dealing with disturbances that are present in the system as well as turnpike phenomenon. It has the potential to save 32.24% and 19l of energy and water in a day respectively, while also promising lower energy and water bills to the end users. In addition, there is revenue benefit through the sale of excess renewable energy back to the grid through an appropriate feed-in tariff. Life cycle cost (LCC) analysis is conducted to determine the total cost of setting up and operating the system over its life, which shows that the benefits would pay back the cost of the system even before half of its life elapses. This control strategy of both hot water devices powered using integrated renewable systems is suitable for peri-urban home owners.

Keywords: Model predictive control; Wind energy; Solar energy; Heat pump water heater; Instantaneous shower (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917305342
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:204:y:2017:i:c:p:1333-1346

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.033

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1333-1346