Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system
Huawei Chang,
Zhongmin Wan,
Yao Zheng,
Xi Chen,
Shuiming Shu,
Zhengkai Tu,
Siew Hwa Chan,
Rui Chen and
Xiaodong Wang
Applied Energy, 2017, vol. 204, issue C, 446-458
Abstract:
A combined cooling heating and power (CCHP) system based on high-temperature proton exchange membrane fuel cell (PEMFC) is proposed. This CCHP system consists of a PEMFC subsystem, an organic Rankine cycle (ORC) subsystem and a vapor compression cycle (VCC) subsystem. The electric power of the CCHP system is 8kW under normal operating conditions, the domestic hot water power is approximately 18kW, and the cooling and heating capacities are 12.5kW and 20kW, respectively. Energy and exergy performance of the CCHP system are thoroughly analyzed for six organic working fluids using Matlab coupled with REFPROP. R601 is chosen as the working fluid for ORC subsystem based on energy and exergy analysis. The results show that the average coefficient of performance (COP) of the CCHP system is 1.19 in summer and 1.42 in winter, and the average exergy efficiencies are 46% and 47% under normal operating conditions. It can also be concluded that both the current density and operating temperature have significant effects on the energy performance of the CCHP system, while only the current density affects the exergy performance noticeably. The ambient temperature can affect both the energy and exergy performance of the CCHP system. This system has the advantages of high facility availability, high efficiency, high stability, low noise and low emission; it has a good prospect for residential applications.
Keywords: Micro-CCHP; High-temperature PEMFC; Working fluid selection; Energy and exergy analysis; Organic Rankine Cycle; Vapor compression cycle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917309017
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:204:y:2017:i:c:p:446-458
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.07.031
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().