EconPapers    
Economics at your fingertips  
 

Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)

Rui Zhang, Xiaowen Zhang, Qi Yang, Hai Yu, Zhiwu Liang and Xiao Luo

Applied Energy, 2017, vol. 205, issue C, 1002-1011

Abstract: The blends of monoethanolamine (MEA), N-methyl-diethanolamine (MDEA) and piperazine (PZ) as a solvent for CO2 capture were investigated in terms of CO2 absorption-desorption performance. The total concentration of the blends was 6M mixed with different amine molar ratios, 3M MEA-2.5M MDEA-0.5M PZ (Blend-1), 3M MEA-2M MDEA-1M PZ (Blend-2) and 3M MEA-1.5M MDEA-1.5M PZ (Blend-3). The CO2 equilibrium solubility, absorption capacity, initial absorption rate, speciation, relative energy consumption and heat of absorption for each blend were investigated in this work. The results showed that Blend-3 had the best CO2 absorption performance in terms of the CO2 equilibrium solubility, initial CO2 absorption rate and CO2 absorption capacity compared to Blend-1 and Blend-2 and 5M MEA. 13C NMR spectroscopy was used to quantify species formed in the CO2-loaded MEA-MDEA-PZ solution and the results shows that Blend-1 system produced more bicarbonate and less carbamate compared to Blend-2 and Blend-3 systems. The heat of CO2 absorption was calculated using Gibbs-Helmholtz equation and the results showed that MEA-MDEA-PZ systems had lower absorption heat than that of MEA, DEA, AMP, PZ and trio-amine blends of MEA-AMP-PZ. For the CO2 desorption performance, three blends studied in this work had lower relative energy consumption for the solvent regeneration compared to 5M MEA and Blend-1 showed the best desorption performance. Among these blends, an increase in molar ratio of MDEA/PZ in the blends led to a decrease in energy consumption and an increase in cyclic capacity and the CO2 desorption rate. In addition, the blend of MEA-MDEA-PZ reduced the energy consumption by 15.22–49.92% compared to 5M MEA.

Keywords: Caron dioxide; Amine; MEA; MDEA; PZ; Energy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311364
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1002-1011

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.130

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1002-1011