High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner
Dawid P. Hanak,
Barrie G. Jenkins,
Tim Kruger and
Vasilije Manovic
Applied Energy, 2017, vol. 205, issue C, 1189-1201
Abstract:
Direct air capture of CO2 has the potential to help meet the ambitious environmental targets established by the Paris Agreement. This study assessed the techno-economic feasibility of a process for simultaneous power generation and CO2 removal from the air using solid sorbents. The process uses a solid-oxide fuel cell to convert the chemical energy of fuel to electricity and high-grade heat, the latter of which can be utilised to calcine a carbonate material that, in turn, can remove CO2 from the air. The proposed process was shown to operate with a net thermal efficiency of 43.7–47.7%LHV and to have the potential to remove 463.5–882.3 gCO2/kWelh, depending on the fresh material used in the calciner. Importantly, the estimated capital cost of the proposed process (1397.9–1740.5 £/kWel,gross) was found to be lower than that for other low-carbon emission power generation systems using fossil fuels. The proposed process was also shown to achieve a levelised cost of electricity of 50 £/MWelh, which is competitive with other low-carbon power generation technologies, for a carbon tax varying between 39.2 and 74.9 £/tCO2. Such figure associated with the levelised cost of CO2 capture from air is lower than for other direct air concepts.
Keywords: Direct air capture; Solid-oxide fuel cell; Power generation; Process modelling and simulation; Feasibility study; Techno-economic analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1189-1201
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.090
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().