CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite
S.J. Chen,
Z.C. Tao,
Y. Fu,
M. Zhu,
W.L. Li and
X.D. Li
Applied Energy, 2017, vol. 205, issue C, 1435-1446
Abstract:
To improve the efficiency of offshore natural gas exploitation, CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite was studied systematically by examining the voidage, adsorption time, inlet velocity, adsorber diameter, temperature, and pressure. An adsorption purification model was established and validated based on the experimental data. In quiescent adsorption, the contact area between 13X zeolite and the gas mixture is the most important factor for evaluating the adsorption purification efficiency, and higher voidages in the range of 0.25–0.50 were favorable for gas adsorption. However, in addition to the contact area, the contact time is an important factor for flowing adsorption. The purification efficiency of flowing adsorption is highest at a voidage of 0.35. At this voidage, the pressure drop in the adsorber was 70Pa. The stabilization time for adsorption equilibrium decreased with increasing inlet velocity. As the adsorption time increased, the adsorption heat at different axial lengths of the adsorber tended to reach a constant value, while a symmetric adsorption heat curve was observed at different radial lengths. Toward the reduction of the energy consumption in the adsorption process, the optimum adsorber lengths for different diameters, temperatures, and pressures were determined. Adsorption purification was enhanced with increasing temperature. Further, it could also be improved by an appropriate pressure. Optimization of the adsorber structure parameters and regulation of the state parameters during the adsorption process are important for reducing energy consumption and improving the purification efficiency. The findings of this study serve asa guide for setting the purification parameters for CO2 separation from offshore natural gas in engineering applications.
Keywords: 13X zeolite; Offshore natural gas; Voidage; Quiescent adsorption; Flowing adsorption; Adsorption heat (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1435-1446
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.084
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().