EconPapers    
Economics at your fingertips  
 

Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation

Dongwon Jung, Kosaku Sasaki and Norimasa Iida

Applied Energy, 2017, vol. 205, issue C, 1467-1477

Abstract: Improving the thermal efficiency of spark ignition (SI) engines is strongly required due to its widespread use but considerably less efficiency than that of compression ignition (CI) engines. Although lean SI engine operation can offer substantial improvements of the thermal efficiency relative to that of traditional stoichiometric SI operation, the cycle-to-cycle variations of combustion increase with the level of air dilution, and become unacceptable. For improving the thermal efficiency by extending the lean-stability limit, this study examines the effects of spark discharge energy and in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation. The spark discharge energy was increased by a high-energy inductive ignition system using ten spark coils and the in-cylinder turbulence level was enhanced by a custom adapter installed in the intake port.

Keywords: SI combustion; Lean operation; Spark discharge energy; Turbulence level; Cycle-to-cycle variations (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917310590
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1467-1477

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.043

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1467-1477