Operational optimization of a grid-connected factory with onsite photovoltaic and battery storage systems
Hao Zhang,
Jie Cai,
Kan Fang,
Fu Zhao and
John W. Sutherland
Applied Energy, 2017, vol. 205, issue C, 1538-1547
Abstract:
Driven by fast advancements in wind and photovoltaic (PV) technologies, onsite renewable electricity generation is becoming attractive to manufacturers since they are able to reduce electricity purchases from the grid and may lower their electricity costs. This paper proposes a methodology to minimize the electricity cost of a grid-connected factory that also has onsite solar power generation and battery storage. Purchases from the grid are subject to time-of-use electricity rate schedules. The problem is formulated asa mixed-integer programming problem and GAMS is used to find the optimal manufacturing and onsite energy flow schedules that have the minimal electricity cost. A case study with one hybrid flow shop, onsite PV power generation, and a battery was used to test the proposed method. Testing results showed that the factory’s electricity cost can be reduced by 54.0% under summer TOU rate on a typical day while a 0.7% electricity cost reduction can be achieved for a representative day under a winter TOU rate. An annual electricity cost savings of 28.1% can be obtained with the optimal schedules. In addition, a parametric study incorporating the optimal schedules was performed to understand the economic performances associated with different PV capacity and battery bank size for the factory.
Keywords: Manufacturing scheduling; Energy optimization; Mixed-integer programming; Onsite renewable generation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731156X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1538-1547
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.140
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().