EconPapers    
Economics at your fingertips  
 

Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment

D.H. Vu, K.M. Muttaqi, A.P. Agalgaonkar and A. Bouzerdoum

Applied Energy, 2017, vol. 205, issue C, 790-801

Abstract: This paper presents the development of an autoregressive based time varying (ARTV) model to forecast electricity demand in a short-term period. The ARTV model is developed based on an autoregressive model by allowing its coefficients to be updated at pre-set time intervals. The updated coefficients help to enhance the relationships between electricity demand and its own historical values, and accordingly improve the performance of the model. In addition, a representative data adjustment procedure including a similar-day-replacement technique and a data-shifting algorithm is proposed in this paper to cultivate the historical demand data. These techniques help cleanse the raw data by mitigating the abnormal data points when daylight saving and holiday occur. Consequently, the robustness of the model is significantly enhanced, and accordingly the overall forecasting accuracy of the model is considerably improved. A case study has been reported in this paper by acquiring the relevant data for the state of New South Wales, Australia. The results show that the proposed model outperforms conventional seasonal autoregressive and neural network models in short term electricity demand forecasting.

Keywords: Electricity demand forecasting; Autoregressive based time varying model; Similar-day-replacement technique (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311510
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:790-801

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.135

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:790-801