EconPapers    
Economics at your fingertips  
 

Experimental research and theoretical analysis of flow instability in supercritical carbon dioxide natural circulation loop

Guangxu Liu, Yanping Huang, Junfeng Wang, Fa Lv and Shenghui Liu

Applied Energy, 2017, vol. 205, issue C, 813-821

Abstract: In the last decade, supercritical carbon dioxide power cycle has attracted worldwide attention. The characteristics of flow instability are critical for the design and safe operation of supercritical carbon dioxide power cycle. In the present paper, theoretical and experimental study was carried out to investigate the characteristics of flow instabilities in supercritical carbon dioxide natural circulation loop. A new explanation of the mechanism of flow oscillation in supercritical carbon dioxide natural circulation has been put forward. It found that the pressure fluctuation, which resulted from the variation of heat transfer mode, might be amplified under the condition of appropriate non-dimensional pressure drop in supercritical fluids natural circulation loop. Effects of typical thermal parameters on flow instabilities of supercritical carbon dioxide natural circulation were discussed in detail. Results showed that, for supercritical fluids natural circulation system, an increase in the system pressure and the local resistance coefficient in the cold section, and a decrease in the local resistance coefficient in the hot section could enhance the system stability.

Keywords: Supercritical carbon dioxide; Natural circulation; Flow instability; Flow dynamics; Pseudo-critical region (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311480
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:813-821

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.132

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:813-821