EconPapers    
Economics at your fingertips  
 

Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations

Yanbin Xin, Bing Sun, Xiaomei Zhu, Zhiyu Yan, Xiaotong Zhao and Xiaohang Sun

Applied Energy, 2017, vol. 206, issue C, 126-133

Abstract: Hydrogen produced from ethanol solution by pulsed discharge was investigated in this work. With needle-net configurations, hydrogen can be easily exported from the plasma reactor thereby preventing hydrogen from consuming by the oxidizing active substances generated from pulsed discharge. Both flow rate and percentage concentration of hydrogen were enhanced with the increase of energy density, but not much change with the increase of discharge time. Flow rate, percentage concentration, and energy consumption of hydrogen were achieved about 800mL/min, 73.5%, and 0.9kWh/m3 H2 respectively with energy density of 6.4J/L. All products were analyzed, which were divided into main and secondary products guiding the mechanism analysis of hydrogen production. The main products contain H2, CO, CH3OH, and the secondary products include C2H2, CO2, macromolecular compounds, nano carbon particles. The high hydrogen yield, emerged nano carbon, low ethanol and energy consumption make this method possess bright prospect in hydrogen production.

Keywords: Hydrogen production; Needle-net configurations; Pulsed discharge; Ethanol solution; Nano carbon particles (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917310723
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:126-133

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.055

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:126-133