A method for the identification of low frequency oscillation modes in power systems subjected to noise
Tao Jin,
Siyi Liu,
Rodolfo C.C. Flesch and
Wencong Su
Applied Energy, 2017, vol. 206, issue C, 1379-1392
Abstract:
The high penetration of renewable energy sources and the consequent integration of such distributed energy generation systems into the grid have significantly increased the interaction between power sources, which can result in low frequency oscillations. Different control techniques are proposed in literature to suppress low frequency oscillations, but the first step to attenuate such oscillations is to characterize them in terms of their dominant modes. This paper combines different results from literature to propose a unified two-step methodology for the mode characterization of low frequency oscillations based on the signals acquired by wide area measurement systems. Since the measured signals typically contain noise, the first stage of the proposed method uses the basis pursuit denoising method combined with a Tunable Q-factor wavelet transform to increase the signal-to-noise ratio and improve the identification results. In a second stage, an improved version of the matrix pencil algorithm, as proposed in this paper, is used to identify the parameters of low frequency oscillation dominant modes. Both simulation and experimental results show that the proposed method has better characterization accuracy than traditional methods, especially when Gaussian noise is considered in the measurements. In addition, the processing time has proven to be reasonable for online identification and characterization of low frequency oscillations.
Keywords: Low frequency oscillation; Mode identification; PMU; Accuracy of fitting; Power system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314137
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:1379-1392
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.123
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().