Experimental study on thermal performance of phase change material passive and active combined using for building application in winter
Xiangfei Kong,
Pengfei Jie,
Chengqiang Yao and
Yun Liu
Applied Energy, 2017, vol. 206, issue C, 293-302
Abstract:
Phase change material (PCM) used in buildings can increase building energy efficiency and decrease indoor temperature fluctuation. In this study, composite PCM was composed of paraffin and expanded perlite (EP) (60wt%, 40wt%) and was prepared through a self-made vacuum absorption roller. A phase change material wallboard (PCMW) was fabricated by the prepared composite PCM through the mould forming method. A plate-type heat accumulator (HAR) with embedded copper tubes was connected to a solar thermal heating system. HAR is fully filled with paraffin, which can store or release the heat gained by the solar thermal heating system. Therefore, PCM active and passive combination is realised through the PCMW incorporated in the building wall and the HAR connected to the solar thermal heating system in the same building. In order to analyze the performance of PCM active and passive combination, two same cubes were used to conduct a contrastive experimental study using different strategies under the winter conditions. The experimental result has indicated that (1) PCMW with melting point of 24.88°C and latent heat of 59.68J/g was incorporated in the walls, passively enhancing the thermal inertia of building envelope; (2) HAR with PCM extended the service period of solar thermal heating system; (3) PCM active and passive combination further enhanced the thermal performance of building envelope, indoor thermal comfort and building energy efficiency.
Keywords: Solar energy; Phase change material; Phase change material wallboard; Thermal energy storage; Passive system; Active system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731200X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:293-302
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.176
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().